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Abstract. The ( Z + I ) D  king model on a triangular lattice is explored for lattices of up to 
5 x 5 sites. Finite-size scaling techniques are used to estimate the critical parameters 
x, = 0.2096(2), Y = 0.627(4), p = 0.322(6), y = 1.236(8). These agree with previous estimates, 
within errors, and with the hypotheses of universality and hyperscaling. T h e  behaviour at 
low temperatures is also studied, and theoretical predictions of finite-size scaling at a 
first-order transition are confirmed. 

1. Introduction 

This paper is an extension of previous work (Hamer 1983, Henkel 1984) on finite-size 
scaling in the ( 2 + 1 ) ~  Ising model. We study a triangular rather than square lattice, 
and estimate magnetic as well as thermal critical indices. This enables a check of the 
universality between the square and triangular lattices; and furthermore, Privman 
(1983) has suggested that correction-to-scaling terms may be smaller for the magnetic 
indices on a triangular lattice, because of the higher coordination number. 

The results obtained for the critical parameters are as follows: the critical coupling 
x, = 0.2096(2), and the critical indices v = 0.627(4), P = 0.322(7), y = 1.236( 10). These 
indices agree within errors with other determinations, and confirm the expected univer- 
sality between the square and triangular lattices, and between the (2t 1 ) ~  and the more 
usual 3~ formulations. The hyperscaling relation between the magnetic indices is also 
well satisfied. The only thorn in this rosy picture is the specific heat index a :  no 
reliable result for this index can be obtained. 

There have been several discussions in recent years of the finite-size scaling 
behaviour expected at a first-order transition (Blote and Nightingale 1982, Privman 
and Fisher 1983). To study this question, we look at the low-temperature region of 
the model. The finite-lattice susceptibility is found to diverge (and the mass gap to 
decrease) exponentially with the area of the lattice, as predicted theoretically. Estimates 
of the interfacial tension can be deduced therefrom. Widom’s (1974) scaling relation 
p /  v = 2 is shown to follow naturally from the finite-size scaling hypotheses. 

2. Finite-size scaling analysis 

The Hamiltonian field theory version of the Ising model has been discussed by Fradkin 
and Susskind (1978), and see also Suzuki (1976). On a triangular spatial lattice of 
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424 C J Hamer and C H J Johnson 

M x M sites, with a continuous time variable, the quantum Hamiltonian may be written 

Here the index m labels sites on the spatial lattice, and the { G i }  are the three axis 
vectors of the triangular lattice. The oi are Pauli matrices acting on a two-state spin 
variable at each site, g is a dimensionless coupling constant (the ’temperature’) and 
x = 2 / g 2 ,  a is the lattice spacing and h is the magnetic field. It is most convenient to 
work with the reduced Hamiltonian: 

2a 
W E  - H  = M 2 - C  a 3 ( m )  - x  a l ( m ) a l ( m  + G i )  - h a l ( m ) .  ( 2 . 2 )  

g m m&, m 

Periodic boundary conditions are assumed: 

u l ( m + M G i ) = a l ( m ) .  ( 2 . 3 )  

The correspondences between Hamiltonian field theory and statistical mechanics 
are by now well known (Kogut 1979, Barber 1984). If we denote the first two 
eigenvectors of the operator W as 10) and 11) respectively, and their eigenvalues by wo 
and U , ,  the quantities of interest to us are the mass gap 

F ( x )  = @ l ( X )  - wo(x) ,  (2 .4)  

the Callan-Symanzik beta function 

P ( g ) / g  = H x ) / ( F ( x ) - 2 x F ’ ( x ) ) ,  

E ( x )  = - ( x 2 / M 2 )  d2Wo/dX2, 

X ( X )  = - ( I / M ~ )  a2wo/ah I h C O .  

the ‘specific heat’ per site 

and the susceptibility per site 
2 (2 .7)  

The spontaneous magnetisation is strictly zero for any finite lattice: but a finite-lattice 
observable can be found which converges smoothly to the spontaneous magnetisation 
in the bulk limit (Yang 1952, Uzelac 1980, Hamer 1982), namely 

These quantities have been calculated for a sequence of different lattice sizes, 
M = 1 , 2 ,  . . . , 5  (for details see the appendix), and finite-size scaling methods will be 
used to estimate their behaviour in the bulk limit, M + w .  

2.1. High-temperature behaviour 

Well away from the critical point, the eigenvalues are expected to converge linearly 
to their bulk limit, and so an iterated Aitken algorithm can be used to estimate the 
bulk result from the finite-lattice values (Hamer and Barber 1981b). The results for 
the thermodynamic quantities of interest are illustrated in figures 1-3 .  
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\ 
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Figure 1. ( a )  Ground-state energy per site, and ( b )  specific heat per site, as functions of 
x. The broken curves are finite-lattice results, labelled by the lattice size M. The full c u m  
is the estimated bulk limit, accurate to the order of the width of the curve, except where 
breaks occur. 

For the beta function, the upper set of finite-lattice curves are the estimates (2.5) 
(Hamer et al 1978); the lower set are the Roomany-Wyld (1980) estimates, 

(2.9) 

where FM(x) is the mass gap for lattice size M, and RM(x) is the ‘scaled mass gap ratio’ 

R & f ( X )  = M F , ( x ) / ( M -  1)&-1(x). (2.10) 

As usual, the Roomany- Wyld estimates converge remarkably quickly to the bulk limit. 
It is also noteworthy that whereas the other observables display the expected rapid, 

linear convergence to the bulk limit in the high-temperatur: (small x) region, the 
‘magnetisation’ &(x)  is an exception to the rule, and converges ‘logarithmically’ (i.e. 
like a power of M )  to its zero limiting value. This phenomenon will be discussed 
further in 0 2.3. 

A critical point at x, = 0.21 is clearly evident in all these data. The mass gap, beta 
function and magnetisation vanish there, while the specific heat and susceptibility 
show evidence of a divergence. The finite-lattice susceptibility in fact diverges strongly 
in the whole low-temperature region x 3 x,: this will also be discussed in 9 2.3. 
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X 

Figure 2. (a)  The mass gap, and ( b )  the beta function, as a function of x. Conventions 
as in figure 1 .  In ( b )  the upper curves correspond to equation (2 .5 ) ,  the lower ones to the 
Roomany-Wyld estimates (2.9). The Roomany-Wyld estimate for M = 4 is indistinguish- 
able from the bulk limit, and has been omitted. 

2.2. Critical parameters 

Finite-size scaling techniques can now be used to estimate the critical parameters 
(Nightingale 1976, Hamer and Barber 1981a, b). Firstly, a sequence of estimates of 
the critical point, { x M } ,  can be found as solutions of the equation 

R,(x,) = 1. (2.11) 

The results are listed in table 1. This sequence is expected to converge logarithmically, 
and Lubkin’s algorithm (Lubkin 1952, Barber and Hamer 1982) has been used to 
estimate the bulk limit, giving 

X, = 0.2096 * 0.0002. (2.12) 

The exponent Y can be calculated from the finite-lattice beta function (2.5), whose 

P M ( x M )  - M-l’”, (2.13) 

scaling behaviour is 

M -a2 

at the pseudo-critical points xM Hence one can use the estimate 

(2.14) 
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Figure 3. ( a )  The magnetisation, and ( b )  the susceptibility per site, as functions of X. 

Conventions as in figure 1. 

or else a second estimate is 

(2.15) 

Both these sequences are displayed in table 1. It is worth noting that the results are 
almost identical with those obtained for the square lattice (Hamer 1983). The correc- 
tion-to-scaling terms are smaller for the second, logarithmic sequence. 

Table 1. Finite-size scaling estimates for the critical point x,, and critical indices 1/ Y and 
a / v ,  as defined by equations (2.11), (2.14), (2.15) and (2.18) of the text. M is the larger 
of the two lattice sizes used in each estimate. Also listed are the estimated bulk limits for 
each finite-lattice sequence, and the end shift E at which this estimate was taken. 

0.166 699 1.283 79 1.481 54 2.0000 
0.204 323 1.380 76 1.520 85 0.7676 
0.208 169 1.432 57 1.541 24 0.5937 
0.209 059 1.464 13 1.552 71 0.5191 

Extrapolated value: 0.2096 (2) 1.60 (2) 1.594(10) 0.34 (5) 
E :  0 0.48 0.12 - 1.72 
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We now want to estimate the limit point of these sequences, which is a difficult 
and rather subjective business with sequences as short as this (Hamer 1983, Henkel 
1984). We have applied both Aitken’s algorithm and Lubkin’s algorithm to extrapolate 
each sequence; and to test the stability and accuracy of the result, we have also applied 
an ‘end-shift’ M + M + E in (2.14) and (2.15), where E is a free parameter which does 
not affect the limit of the sequence (Hamer and Barber 1981b). A useful criterion 
appears to be to adjust E so that the results of the Aitken and Lubkin extrapolations 
agree?. The results are shown in table 1.  The sequence (2.15) leads to the more 
accurate estimate: 

l / u =  1.594*0.01. (2.16) 

The ratio a /  U can be extracted from the finite-size scaling behaviour of the specific 

(2.17) 
heat: 

EM (XM 1 M;m Ma’“ 

whence 

(2.18) 

This sequence is also listed in table 1,  and can be extrapolated to give an estimate 
(2.19) 

The results are again similar to those obtained in the square lattice case (Hamer 1983), 
and the accuracy is equally poor in both cases. This appears to be due to the slow 
decrease of the correction-to-scaling terms for a /  U (Hamer and Barber 1981b). 

a /  Y = 0.34 f 0.05. 

The ‘magnetisation’ is associated with the ratio /3/ v: 
AM (XM) M:m M-8/’. (2.20) 

The most rapidly convergent sequence of estimates is again the logarithmic one: 

(2.21) 

which is shown in table 2. The correction-to-scaling terms are indeed very small for 

Table 2. Finite-size scaling estimates for the critical indices t9/ v and y /  v, as defined by 
equations (2.211, (2.24) and (2.25) of the text. The estimated bulk limits and corresponding 
values of the end shift E are also listed. 

M 

0.566 713 5.295 88 1.867 08 
0.514431 3.676 50 1.973 00 
0.512 813 3.061 81 1.975 82 

2.167 50 1.974 11  

Extrapolated value: 0.513 (IO) 2.02 (IO) 1.970 ( 5 )  
E :  - 1.36 - 0.01 

‘r The finite-lattice sequences near the critical point are expected to converge logarithmically, in which case 
the Lubkin algorithm is more suitable than Aitken’s: and indeed the Lubkin result is more stable to the end 
shift E. 
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this case, as predicted by Privman (1983); but unfortunately, we have been unable for 
technical reasons (see the appendix) to compute a value for M = 5 ,  so the sequence 
is very short, and its extrapolation gives only 

p /  v = 0.513 f 0.01. (2.22) 

The finite-lattice susceptibility gives the ratio y /  v: 

XM(XMM) ,'Im MY'" (2.23) 

via the sequences 

(2.24) 

(2.25) 

These sequences are listed in table 2. Again, the correction-to-scaling terms appear 
least for the logarithmic sequence, and our best estimate is 

y / v  = 1.970*0.005. (2.26) 

2.3. Low-temperature behaviour 

The 'low-temperature' region x > xc, h = 0, is a first-order transition line. A comprehen- 
sive discussion of the finite-size scaling behaviour expected at first-order transitions 
has been given recently by Privman and Fisher (1983). The basic features may be seen 
if we restrict ourselves to the subspace spanned by the two lowest eigenvectors 10) and 
\ I ) ,  whose eigenvalues become degenerate in the bulk limit. For any finite lattice, the 
crossing between these two eigenvalues at h = 0 is 'avoided', as shown in figure 4(a).  
The reduced Hamiltonian W can be parametrised as 

w=( ha ) 
ha wo+S 

for an M x M lattice with h small. Here 
W O /  M 2  = fo - ih2Xm + O( h4) 

(2.27) 

(2.28) < x  - - I  
- - f  

6 

h h 

lo) (bl 

Figure 4. Structure of the lowest two Hamiltonian eigenvalues as a function of magnetic 
field h i- the low-temperature region. (a) Finite-lattice case: 'avoided crossing', with mass 
gap S. ( b )  Infinite-lattice case: degeneracy at h = 0. 
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where fo is the ground-state energy per site in the bulk (at h = 0), and ,ym is the bulk 
susceptibility (which is relatively small, and will be ignored henceforth). The quantity 
6 is just the finite-lattice mass gap at h = 0, and in the low-temperature region it is 
expected to vanish exponentially with the area of the lattice (Blote and Nightingale 
1982, Privman and Fisher 1983): 

6 = F M  - E( M) exp( - M2e) for x > x,, (2.29) 

where I? is the reduced interfacial tension. Physically, this is because the splitting 
between the two eigenvalues is proportional to the transition amplitude between 
‘spin-up’ and ‘spin-down’ magnetised states on the lattice. In the Euclidean framework, 
such a transition is suppressed by a Boltzmann factor involving the excess free energy 
associated with the interfacet between the oppositely magnetised regions: this 
Boltzmann factor is just the exponential term in (2.29). 

The linearised magnetic interaction term ha in (2.27) is related to the spontaneous 
magnetisation. In the bulk limit, as S + 0, the slope of the eigenvalues at h = 0 is equal 
to a (figure 4(b)),  and so we find the spontaneous magnetisation is given by 

M-CC 

1 dEo a A,= lim -- -- 
M - x  ( M2 a h )  - M 2 ’  
h - 0  

(2.30) 

The quantity a / M 2  is just the matrix element used to estimate the magnetisation 

Now the lowest eigenvalue of the matrix (2.27) is 
in equation (2.8). 

w = w ~ +  6/2-(S2/4+ h2a2)1’2  (2.31) 
so that the jinite-lattice susceptibility is 

2 a2 
2M2A;d-’( M) exp(M’5). (2.32) 

Thus the curvature at h = 0 is extremely large, as shown in figure 4(a),  building up to 
a &function singularity and a discontinuous change in slope in the bulk limit as in 
figure 4( b) .  

Let us now demonstrate this behaviour numerically. The rapid divergence of the 
finite-lattice susceptibility was already exhibited in figure 3( b) .  The equally rapid 
decrease of the mass gap is shown in figure 5 (  a ) ,  where a graph of log F M  against M2 
clearly shows a linear decrease. This can be used to estimate the interfacial tension, 
using the formula 

(2.33) 

which follows from (2.29). The results are shown in figure 5(b) .  It can be seen that 
the interfacial tension drops away towards zero at the critical point x,. At larger x, it 
can be approximately fitted by a form 

(2.34) 1 1.66( x - 0.3)”2. 

t The Hamiltonian formulation corresponds to a ‘cylindrical geometry’ in the language of Privman and 
Fisher (1983), in which the most likely interface runs across the cylinder, i.e. across the area of the spatial 
lattice, with the time direction corresponding to the longitudinal axis. 
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Figure 5. (a )  The logarithm of the finite-lattice mass gap as a function of M2, the area 
of the lattice. A, x = 0.4; B, x = 1.0. ( b )  The reduced interfacial tension as a function of 
x. Conventions as in figure 1 .  

2.4. Hyperscaling 

The hypotheses of finite-size scaling theory, if consistently applied, imply many (if not 
all) of the hyperscaling relations. This is only to be expected, since the finite-size 
scaling behaviour can be derived from a renormalisation group analysis which itself 
implies hyperscaling (see, e.g., the review by Barber (1984)). Two examples can be 
extracted from the discussion above. 

Firstly, one would expect the finite-lattice interfacial tension near the critical point 
to give the ratio P I U :  

But then the definitions (2.33) or (2.29), together with the assumed scaling behaviour 
of the mass gap, 

necessarily imply Widom's (1974) scaling relation 

(2.36) 

# U / u = 2 .  (2.37) 
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Secondly, from equations (2.29) and (2.32) it follows that one can find another 

(2.38) 

The results are in fact almost identical (within 1 part in lo5) to those shown in figure 
3(a) ,  corresponding to the definition (2.8). But then the usual finite-size scaling 
hypotheses for i M ,  F M  and xM near the critical point imply the hyperscaling relation 

y l  v -k 2/31 v = 3. (2.39) 

This is indeed satisfied very nicely by the estimates (2.22) and (2.26). We note in 
passing that equation (2.38) explains the peculiar behaviour of the finite-lattice magneti- 
sation in the high-temperature region: while F M  and jM converge in a rapid, linear 
fashion to their finite bulk limits, the magnetisation AM (or AM) only converges to 
zero like 1/M. 

There have been persistent suggestions that hyperscaling is violated in the 3~ Ising 
model (Freedman and Baker 1982). Binder et al (1985) discussed finite-size tests of 
hyperscaling in a recent paper, where the form of violation considered was due to a 
‘dangerous irrelevant variable’. It appears that in this case the ‘effective’ exponents 
extracted from a finite-size scaling analysis such as ours would still obey hyperscaling 
relations such as (2.39) but would no longer be equal to the true critical exponents. 
There is no way that this possibility can be tested within our present analysis. 

estimate of the spontaneous magnetisation as 

A =  M - (FMXMIM’)”’ M<m Ju=. 

3. Discussion 

To summarise, our principal results for the critical parameters of the ( 2 + 1 ) ~  Ising 
model on a triangular lattice are 

x, = 0.2096(2), (3.1) 
11 v = 1.594( lo), hence v = 0.627(4), (3.2) 

/3/v=0.513(10), hence /3 = 0.322(6), (3.3) 

y/ v = 1.970(5), hence y = 1.236(8). (3.4) 

These were obtained from a sequence of triangular M x M lattices up to M = 5 sites. 
High-temperature series results for the same model are (Hamer and Irving 1984): 

x, = 0.209 76( 15), y = 1.247( 5), v = 0.64(2), (3.5) 
and from a low-temperature series analysis (Marland 1981) 

x, = 0.2098(2), y’ = 1.250( 12), p = 0.315(2), a’= 0.098(3). (3.6) 

These values agree with ours within errors, except in the case of the specific heat index 
CY. As explained in the previous section, we place little reliance on our determination 
of this quantity. 

Finite-size scaling results for the ( 2 + 1 ) ~  Ising model on a square lattice were 
v = 0.635(5) (Hamer 19831, and v = 0.629(2), /3 = 0.324(9) (Henkel 1984). These agree 
with our present results (3.2) and (3.4). 

The most accurate recent estimates for the 3~ king model are 

v = 0.629(2), y = 1.238(3), a = 0.12(2) (3.7) 
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from high-temperature series analyses on the BCC lattice (Adler et al 1982, Ferer and 
Velgakis 1983, Adler 1983); 

from field-theory methods (Le Guillou and Zinn-Justin 1980, Baker et al 1978); 

from a Monte Carlo renormalisation group calculation (Pawley et a1 1984); and 
y /  v = 1.98 f 0.02 from a Monte Carlo finite-size scaling analysis (Barber et a1 1984). 

It appears that, except in the case of the index a, our results agree within errors 
with other determinations. The expected universality between the square and triangular 
lattices, and between the ( Z + I ) D  model and the 3~ model, is thus confirmed. 

Our accuracy is somewhat less than that obtained by other methods?, but neverthe- 
less it is useful to confirm these other results by a different approach. To improve the 
accuracy substantially, one must obtain eigenvalues for a 6 x 6 lattice: this system is 
much too large to analyse exactly (Hamer 1983), but it might be possible to obtain 
sufficiently precise eigenvalues by some approximation technique. 

We have also studied the behaviour of the triangular lattice system in the low- 
temperature region. The predicted exponential decrease of the finite-lattice mass gap 
with area (Blote and Nightingale 1982, Privman and Fisher 1983) has been confirmed, 
and has been used to extract values for the ‘reduced interfacial tension’ in this model. 

Finally, a brief discussion of hyperscaling was given. It was shown that the 
hypotheses of finite-size scaling imply relations such as 

p / v = 2  (3.10) 
and 

v = 0.630(2), y = 1.241(2), p = 0.325(2), a = 0.110(5), (3.8) 

v = 0.629(4) (3.9) 

y /  v + 2p/  v = 3 (3.11) 
and indeed our results (3.3) and (3.4) satisfy the latter relation to within 0.2%. A third 
hyperscaling relation, 

2 / v - a / v = 3 ,  (3.12) 
is not satisfied, but this is most likely due to our poor value for a/v. 
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Appendix. Numerical methods 

The calculations described in this paper were carried out on a CYBER 205 computer, 
and occupied approximately 75 min CPU time. The Hamiltonian matrix for the 5 x 5 

t Although note that the value y / v  = 1.970(6) obtained from the field-theory values (3.8) is of about the 
same accuracy as our (3.41, and agrees with it exactly. 
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lattice involved 115 904 basis states, and approximately 5.5 x lo6 non-zero matrix 
elements. 

The 205 is a vector processing machine, which operates most efficiently when 
processing a long string of contiguous data elements in memory. We have endeavoured 
to adapt previous numerical techniques (Roomany et a1 1980, Irving and Thomas 
1982, Hamer 1983) to this situation as follows. 

(i)  In the first stage of the calculations, which is the generation of the Hamiltonian 
matrix, the ‘core’ routine occupying most of the CPU time is that which transforms a 
given spin configuration by translations, rotations and reflections to find the ‘minimum’ 
representative configuration, and its symmetry factor under these transformations. For 
each ‘up’ spin in the original configuration, represented by a ‘set’ bit in the spin vector, 
the corresponding contribution to each transformed configuration can be given as an 
additive binary number, 2”, where n is the position of that spin in the transformed 
configuration. Thus all of the 12 x 25 = 300 transformed configurations can be found 
by 25 vector additions, each involving 300 contiguous elements. 

(ii) In the second stage of the calculation, which is the calculation of the matrix 
eigenvalues by a Lanczos algorithrh, it is not so easy to ‘vectorise’ the calculations. 
The ‘core’ routine involves the multiplication of the Hamiltonian matrix into a given 
state vector: but since the matrix is sparse, there is no natural structure involving 
contiguous data elements. The best we have been able to do is to treat 15 or 20 different 
parameter values at once, and ‘vectorise’ the multiplications in these parameters. To 
minimise page faults, the Hamiltonian matrix was broken up into ‘blocks’, so that only 
a restricted subset of the basis state amplitudes were needed at any one time. 

The Lanczos routine used in these calculations provided an accurate estimate of 
the ground-state eigenvalue, but no accompanying eigenvector: hence we were unable 
to calculate the finite-lattice magnetisation for the 5 x 5 lattice. Henkel (1984) used a 
two-step iterative Lanczos algorithm which does provide a reliable eigenvector. 
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